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Suppression of chaos in weakly coupled diode resonators
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We have demonstrated through the system of two coupled driven diode resonators that chaos of the
diode resonators can be reduced by weak coupling. Stable periodic orbits emerge from the chaotic at-
tractor when a small coupling signal perturbs the diode resonator. However, we find that the stability of
the periodic orbits is strongly dependent on the coupling signals. Our results are examined with recently

proposed techniques for controlling chaos.

PACS number(s): 05.45.+b

I. INTRODUCTION

Chaos can be commonly found in nature. By the in-
herent nature of long-term unpredictability, chaotic
motions have been generally regarded as undesirable in
many systems even though they sometimes improve sys-
tem performances such as mixing or combustion
efficiency. Therefore the control or suppression of chaos
is of much practical importance but it has received little
scientific attention until Ott, Grebogi, and Yorke (OGY)
proposed a method of controlling chaos [1]. The key idea
of the OGY method is the following: A chaotic attractor
consists of an infinite number of embedded unstable
periodic orbits. By applying small carefully chosen time-
dependent perturbations to the chaotic system, the chaot-
ic attractor can be stabilized into one of the embedded
periodic orbits. They have concluded that the chaotic
systems have more flexibility because their method pro-
vides a way to create a large variety of periodic motions
from the chaotic system.

According to the recent experimental results, the OGY
method has been proved to be efficient in many physical
systems. For example, periodic orbits from the chaotic
attractor of a driven magnetoelastic ribbon [2] and from
the chaotic flows in a thermal convection loop [3] have
been stabilized experimentally by applying small pertur-
bations to the system control parameter. A generalized
OGY method has also been introduced to handle high-
dimensional systems and this method needs no knowledge
of the underlying dynamical equations [4]. Another in-
teresting method of controlling chaos is to apply weak
periodic modulations to the system control parameter [5].
It has been demonstrated that the chaotic motion can be
converted into a periodic one when it becomes phase-
locked to the external periodic modulation by the non-
linear resonant parametric amplification studied earlier
by many authors [6—8]. Chaos of the spin-wave instabil-
ity in a yttrium-iron-garnet oscillator has been successful-
ly stabilized into periodic motions by implementing this
method [9].

In this paper, we report the stabilization of the unsta-
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ble periodic orbits embedded in the chaotic attractor of a
driven diode resonator by weak coupling to another diode
resonator. Power spectra and return maps of the time
signals of the coupled diode resonator clearly indicate
that the chaotic attractor is reduced into a variety of
periodic orbits, sometimes with period 16, when the ap-
propriate coupling is made. Our experiments suggest
that the coupled systems having the same dynamical
property such as period doubling are efficient in suppress-
ing chaos. However, stabilizing specific periodic orbits
by the weak coupling, thus controlling chaos, seems to be
much more intricate. The relation between our results
and the recent techniques of controlling chaos is exam-
ined.

II. EXPERIMENTS AND RESULTS

The system used in our experiments consists of two
diode resonators which are coupled inductively to each
other. Each diode resonator has a resistor R (100 ), an
inductor L (10 mH), a small-signal silicone p-n junction
diode (1N4007), and a coupling inductor L', and all com-
ponents are connected in series as shown in Fig. 1. In-
ductive coupling of the two resonators is made through
the coupling inductors which are solenoids wrapped
around a common ferrite cylinder. By removing the cou-
pling inductor we can have two uncoupled resonators.
To achieve the weak coupling between the resonators’
self-inductance L’ and mutual inductance M are made to
be less than 5% of the main inductance L. Sinusoidal
driving voltages V', and V, are supplied by a signal gen-
erator (HP 3325B) through two potentiometers. There-
fore, ¥, and V, can be changed independently by varying
the resistance of the potentiometers. The frequency f of
the driving signal is set to 100 kHz which is near the res-
onance frequency of the resonators.

We observe that the uncoupled resonators show the ex-
pected period-doubling and period-adding bifurcations
which are typical for a single diode resonator [10]. [See
Fig. 2(b).] The motion of each resonator is observed
through the time signals, the corresponding power spec-
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FIG. 1. Schematic circuit diagram of weakly coupled diode
resonators. L’ is a coupling inductor of solenoid type. R =100
Q and L =10 mH. 1N4007 silicone p-n junction diodes are
used for diode 1 and diode 2.

tra, and the Poincaré sections (or return maps) of the
voltage across the resistor R; or R, by increasing the
drive signal V| or V,, respectively. For the coupled reso-
nators a large variety of signals of the resonator with
diode 1 (which will be called a “drive” system) by varying
V, can be applied to the resonator with diode 2 (which
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FIG. 2. (a) A bifurcation diagram showing the change of
chaos of the response system at V', =4.25 V as a function of V;
of the drive system. V), is varied from 0 to 6.0 V. Note that
various periodic orbits from the chaotic attractor are emerged
in several regions of V,. Arbitrary units are used for the verti-
cal axis. (b) A bifurcation diagram of the drive system for the
same range of V| (V,=4.25 V). Because of the weak coupling
the diagram is very similar to that of the uncoupled resonator.
Arbitrary units are used for the vertical axis.
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will be called a “response” system) through the coupling
inductors.

Our experimental method of suppressing chaos is the
following: We choose a chaotic attractor by varying ¥V,
of the response system when V;=0 V. In the experi-
ments we choose three chaotic attractors at V¥, =1.80,
4.25, and 9.80 V. The chaotic attractor at V,=1.80 V
looks very similar to that of the logistic map and this sug-
gests that the attractor is low dimensional. The chaotic
attractor at higher ¥, has a fractal shape with stretchings
and foldings, indicating that it is a high-dimensional at-
tractor. Leaving the response system in a chaotic state,
various weak-coupling signals are applied to the response
system by increasing V;. The time series and the return
maps of the voltage across the resistor R, are observed to
see the change of the chaotic motion of the response sys-
tem. The time-series data recorded by a digital storage
oscilloscope (Nicolet 630) are processed to get the corre-
sponding power spectra using an internal fast-Fourier-
transform (FFT) analyzer. To test whether the coupling
strength is weak, we also measure a bifurcation diagram
of the resistor voltage ¥} of the drive system.

Following our method we observe that various periodic
orbits embedded in the chaotic attractor are stabilized
from the chaotic response system. Figure 2(a) is a bifur-
cation diagram of the resistor voltage V2 of the response
system as a function of V| of the drive system. The am-
plitude V, is 425 V and V, is varied from O to 6.0 V.
The horizontal and vertical axes represent the amplitude
of drive signal V| and peak values of the voltage signal
V2 of the response system, respectively. The figure clear-
ly shows that the initial one-band chaotic orbit at
V,=4.25 V and V=0V is suppressed at several regions
of V, and various periodic orbits are retrieved as well
when the appropriate perturbations signal from the drive
system are introduced. Introduction of the small pertur-
bations does not always guarantee the suppression of
chaos. We find that the weak coupling often has no
effect, so most of the region in Fig. 2(a) still remains
chaotic. Figure 2(b) is a bifurcation diagram of the resis-
tor voltage V3 of the drive system for the same range of
V', in the presence of the coupling with the response sys-
tem at V,=4.25 V. Because of the weak coupling, the
observed bifurcation diagram is very similar to that of an
uncoupled resonator although the coupling signal from
the response system also perturbs the drive system.

We observe the interesting result that periodic orbits
can also be generated in the chaotic response system even
though chaotic coupling signals of the drive system are
introduced. For example, we see a very narrow region of
the period-5 orbit around ¥;=1.86 V in Fig. 2(a). Be-
cause of the coupling the drive system is also locked to
the period-5 orbit as shown in Fig. 2(b) but V;=1.86 V is
actually located in the chaotic region of the uncoupled
resonator. The chaotic coupling signal from the drive
system reduces chaos of the response system into a
periodic motion and then the periodic signal makes the
drive system periodic by feedback. This is an unexpected
result compared to the OGY method which uses carefully
chosen time-dependent perturbation signals. However,
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Fig. 2 shows that periodic signals are more efficient in
suppressing chaos than chaotic signals.

In Fig. 3, we show the return map and the power spec-
trum of the stabilized orbit of period 4 at ¥, =2.50 V and
V,=4.25 V. Figure 3(a) is a double exposure of the four
overexposed dots of the period-4 orbit with the return
map of the chaotic attractor of the uncoupled resonator
(V;=0YV and V,=4.25 V). The dots of the periodic or-
bit are deviated very slightly from the chaotic attractor
supporting the fact that a chaotic attractor consists of an
infinite number of unstable periodic orbits. Figure 3(b) is
the corresponding power spectrum obtained from the
time series of the stabilized orbit. It clearly shows the
sharp peaks at every multiple of f/4 (f=100 kHz),
which indicates that the stabilized motion is strongly
periodic. Figures 4(a) and 4(b) are the return map with
the double-exposed chaotic attractor and the correspond-
ing power spectrum of a stabilized period-5 orbit at
V,=1.86 V and V,=4.25 V, respectively. Since the cou-
pled signal for Fig. 4 is weaker than that for Fig. 3, the
dots of the period-5 orbit are almost on the chaotic at-
tractor. The power spectrum in Fig. 4(b) is the same as
that of a period-5 orbit of the uncoupled system except a
small increase of the noise level.

The stabilized high-period orbits are not clearly shown
in Fig. 2(a) because the stabilizing range of the driving
voltage V', is very narrow. High-period orbits are found
to be a little more unstable than the low-period orbits
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FIG. 3. (a) Double exposure showing the return map of the
stabilized period-4 orbit at ¥;=2.50 V and ¥V, =4.25 V (overex-
posed four dots) and the chaotic attractor. The vertical axis has
arbitrary units. (b) A power spectrum of the stabilized orbit in
(a).
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FIG. 4. The stabilized period-5 orbit at ¥;=1.86 V and
V,=4.25 V. (a) A return map of the periodic orbit with the
double-exposed chaotic attractor. The vertical axis has arbi-
trary units. (b) A corresponding power spectrum of the stabi-
lized orbit.
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FIG. 5. Stabilized high-period orbits. The orbits are not
clearly seen in Fig. 2(a). (a) Double exposure showing the re-
turn map of the period-9 orbit at ¥, =4.98 V and V,=4.25V
and the chaotic attractor. The vertical axis has arbitrary units.
(b) A power spectrum of the period-16 orbit at ¥,=3.40 V and
V,=4.25V.
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shown in Figs. 3(a) and 4(a), but it is not too difficult to
identify such orbits by observing the return maps. Figure
5(a) shows a return map of the stabilized period-9 orbit at
V,=4.98 V and V,=4.25 V with the chaotic attractor.
Figure 5(b) is a power spectrum of the period-16 orbit at
V,=3.40 V and V,=4.25 V. It is the highest-period or-
bit we have observed in the experiments. The orbits in
Figs. 5(a) and 5(b) are new orbits which cannot be ob-
served in the uncoupled diode resonator. Therefore the
emergence of the additional periodic orbits by the weak
coupling to the system in chaos is strong evidence that
the chaotic attractor consists of an infinite number of un-
stable periodic orbits.

As we vary V', of the drive system with V', set at the
same value, we observe that the same periodic orbits
emerge many times. The orbits with the same period al-
ways have the same return map which consists of dots at
exactly the same positions in phase space. This suggests
that there are embedded unstable orbits which can be
easily stabilized by the coupling signals. Chaotic attrac-
tors at lower V, (around 1.80 V) also show the similar
suppression of chaos by the weak coupling as that at
V,=4.25 V. More periodic orbits are found by applying
the same range of the coupling signals used for the attrac-
tor at 4.25 V. We find that it is harder to stabilize the at-
tractor in a deep chaotic state (¥,=9.80 V) but we can
still see several low-period orbits at relatively higher V.

III. DISCUSSION

Chaos in the driven diode resonator has been studied
extensively by many authors [11-13]. The physical
reason for chaos in the diode resonator is known as the
nonlinearity of the diode capacitance with respect to the
diode voltage [11,12] and the reverse recovery time of the
diode [13]. Differential equations derived from the stan-
dard model of the p-n junction diode [14] are found to
give good qualitative agreements with the experimental
results such as period-doubling and period-adding bifur-
cations [10].

Chaotic dynamics of strongly coupled diode resonators
has been also studied [15,16]. Most of the routes to chaos
for the strong coupling are quasiperiodic with various
frequency lockings, which is not observed in our experi-
ments. Using the model of the ideal p-n junction diode
we derive two linearly coupled differential equations with
the assumption that the mutual inductance M of the cou-
pling inductor is much smaller than the main inductance
L. For the weak coupling the coupled equations are

d2Q1 1 L 9, |dQ, 1
+— |[R+= +—(RI,+
dt? L Cav, | dt L RO+VD
MR 49, V, |
72 ar L sin(wt) , (la)

szz 1 L oI, |dQ, 1
+— [R+— —
i I3 C v, a +L(R12+V2)
MR 40, V.
12 i =7 sinlwt) , (1b)

where Q, C, I, and V are charge, capacitance, current,
and voltage of the diode, respectively. Subscripts 1 and 2
represent the diode number in Fig. 1. We see that the
linear coupling is made through the current via the mutu-
al inductance M.

Coupled nonlinear maps have been studied theoretical-
ly by many authors for simplicity of computational work
[17-20]. In particular the theoretical works on two
linearly coupled logistic maps [17,18], which may be re-
lated to our work, have shown that there are regions in
the system parameter space where the qualitative
behavior of the coupled maps is quite different from that
of the uncoupled logistic map. When complicated non-
linear systems such as the diode resonators are coupled to
each other, we expect that things are much more compli-
cated. The suppression of chaos by the weak coupling
may be one of the things that have not been studied fully
yet.

In our experiments we find that very small perturba-
tions can change the chaotic dynamics drastically as in
the recently proposed techniques of controlling chaos.
While it is difficult to stabilize high-period orbits by using
a feedback mechanism such as the OGY method, we have
observed many stabilized high-period orbits by the weak
coupling. When small and periodic coupling signals from
the drive system are applied, the parametric amplification
may make the chaotic dynamics regular such that weak
periodic external forcing to the chaotic system eliminates
chaos [5]. However, it is probably too early to speculate
on the mechanism for stabilization of the high-period or-
bits from the chaotic attractor by the chaotic coupling
signals.

To summarize, we have demonstrated experimentally
that chaos of the diode resonator can be suppressed by
the weak linear coupling to a system with the same
dynamical property. The weak-coupling method is found
to be efficient in reducing chaos even in a deep chaotic
state into stable periodic motions but more careful study
of the coupling effect on a chaotic attractor is needed to
control chaos. Our experiments also support that a
chaotic attractor consists of an infinite number of unsta-
ble periodic orbits.
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FIG. 2. (a) A bifurcation diagram showing the change of
chaos of the response system at ¥, =4.25 V as a function of V,
of the drive system. ¥, is varied from O to 6.0 V. Note that
various periodic orbits from the chaotic attractor are emerged
in several regions of ¥,. Arbitrary units are used for the verti-
cal axis. (b) A bifurcation diagram of the drive system for the
same range of ¥, (V,=4.25 V). Because of the weak coupling
the diagram is very similar to that of the uncoupled resonator.
Arbitrary units are used for the vertical axis.



